108 research outputs found

    Point spread functions for the Solar Optical Telescope onboard Hinode

    Full text link
    The combined PSF of the BFI and the SOT onboard the Hinode spacecraft is investigated. Observations of the Mercury transit from November 2006 and the solar eclipse(s) from 2007 are used to determine the PSFs of SOT for the blue, green, and red continuum channels of the BFI. For each channel large grids of theoretical point spread functions are calculated by convolution of the ideal diffraction-limited PSF and Voigt profiles. These PSFs are applied to artificial images of an eclipse and a Mercury transit. The comparison of the resulting artificial intensity profiles across the terminator and the corresponding observed profiles yields a quality measure for each case. The optimum PSF for each observed image is indicated by the best fit. The observed images of the Mercury transit and the eclipses exhibit a clear proportional relation between the residual intensity and the overall light level in the telescope. In addition there is a anisotropic stray-light contribution. ... BFI/SOT operate close to the diffraction limit and have only a rather small stray-light contribution. The FWHM of the PSF is broadened by only ~1% with respect to the diffraction-limited case, while the overall Strehl ratio is ~ 0.8. In view of the large variations -- best seen in the residual intensities of eclipse images -- and the dependence on the overall light level and position in the FOV, a range of PSFs should be considered instead of a single PSF per wavelength. The individual PSFs of that range allow then the determination of error margins for the quantity under investigation. Nevertheless the stray-light contributions are here found to be best matched with Voigt functions with the parameters sigma = 0."008 and gamma = 0."004, 0."005, and 0."006 for the blue, green, and red continuum channels, respectively.Comment: 14 pages, 9 figures, accepted by A&

    Vortex Flows in the Solar Chromosphere -- I. Automatic detection method

    Full text link
    Solar "magnetic tornadoes" are produced by rotating magnetic field structures that extend from the upper convection zone and the photosphere to the corona of the Sun. Recent studies show that such rotating features are an integral part of atmospheric dynamics and occur on a large range of spatial scales. A systematic statistical study of magnetic tornadoes is a necessary next step towards understanding their formation and their role for the mass and energy transport in the solar atmosphere. For this purpose, we have developed a new automatic detection method for chromospheric swirls, i.e. the observable signature of solar tornadoes or, more generally, chromospheric vortex flows and rotating motions. Unlike the previous studies that relied on visual inspections, our new method combines a line integral convolution (LIC) imaging technique and a scalar quantity which represents a vortex flow on a two-dimensional plane. We have tested two detection algorithms, based on the enhanced vorticity and vorticity strength quantities, by applying them to 3D numerical simulations of the solar atmosphere with CO5BOLD. We conclude that the vorticity strength method is superior compared to the enhanced vorticity method in all aspects. Applying the method to a numerical simulation of the solar atmosphere revealed very abundant small-scale, short-lived chromospheric vortex flows that had not been found by visual inspection before.Comment: 12 pages, 9 figures, accepted for publication in A&

    Small-scale structure and dynamics of the lower solar atmosphere

    Full text link
    The chromosphere of the quiet Sun is a highly intermittent and dynamic phenomenon. Three-dimensional radiation (magneto-)hydrodynamic simulations exhibit a mesh-like pattern of hot shock fronts and cool expanding post-shock regions in the sub-canopy part of the inter-network. This domain might be called "fluctosphere". The pattern is produced by propagating shock waves, which are excited at the top of the convection zone and in the photospheric overshoot layer. New high-resolution observations reveal a ubiquitous small-scale pattern of bright structures and dark regions in-between. Although it qualitatively resembles the picture seen in models, more observations - e.g. with the future ALMA - are needed for thorough comparisons with present and future models. Quantitative comparisons demand for synthetic intensity maps and spectra for the three-dimensional (magneto-)hydrodynamic simulations. The necessary radiative transfer calculations, which have to take into account deviations from local thermodynamic equilibrium, are computationally very involved so that no reliable results have been produced so far. Until this task becomes feasible, we have to rely on careful qualitative comparisons of simulations and observations. Here we discuss what effects have to be considered for such a comparison. Nevertheless we are now on the verge of assembling a comprehensive picture of the solar chromosphere in inter-network regions as dynamic interplay of shock waves and structuring and guiding magnetic fields.Comment: 8 pages, 2 figures, to appear in the proceedings of the IAU Symposium No. 247, Waves & Oscillations in the Solar Atmosphere: Heating and Magneto-Seismology (Venezuela 2007

    On the fine structure of the quiet solar \Ca II K atmosphere

    Get PDF
    We investigate the morphological, dynamical, and evolutionary properties of the internetwork and network fine structure of the quiet sun at disk centre. The analysis is based on a ∼\sim6 h time sequence of narrow-band filtergrams centred on the inner-wing \Ca II K2v_{\rm 2v} reversal at 393.3 nm. The results for the internetwork are related to predictions derived from numerical simulations of the quiet sun. The average evolutionary time scale of the internetwork in our observations is 52 sec. Internetwork grains show a tendency to appear on a mesh-like pattern with a mean cell size of ∼\sim4-5 arcsec. Based on this size and the spatial organisation of the mesh we speculate that this pattern is related to the existence of photospheric downdrafts as predicted by convection simulations. The image segmentation shows that typical sizes of both network and internetwork grains are in the order of 1.6 arcs.Comment: 8 pages, 9 figure

    Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars VI. First chromosphere model of a late-type giant

    Full text link
    Although observational data unequivocally point out to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. 3D radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff=4010 K, log g=1.5, [M/H]=0.0), which are similar to those of the K-type giant star Aldebaran (alpha Tau). ... we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2nm, and H alpha, as well as the spectral energy distribution (SED) of the emergent radiative flux. The initial model quickly develops a dynamical chromosphere characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values on the order of up to 5000 K although the shock fronts remain quite narrow. Like for the Sun, the gas temperature distribution in the upper layers is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced with one-dimensional static models but demand for advanced 3D HD modelling. Furthermore, including a chromosphere in the models might produce significant contributions to the emergent UV flux.Comment: 14 pages, 8 figures, A&A (2017, accepted

    Dynamic Models of the Sun from the Convection Zone to the Chromosphere

    Get PDF
    The chromosphere in internetwork regions of the quiet Sun was regarded as a static and homogeneous layer for a long time. Thanks to advances in observations and numerical modelling, the wave nature of these atmospheric regions received increasing attention during the last decade. Recent three-dimensional radiation magnetohydrodynamic simulations with CO5BOLD feature the chromosphere of internetwork regions as a dynamic and intermittent phenomenon. It is a direct product of interacting waves that form a mesh-like pattern of hot shock fronts and cool post-shock regions. The waves are excited self-consistently at the top of the convection zone. In the middle chromosphere above an average height of 1000 km, plasma beta gets larger than one and magnetic fields become more important. The model chromosphere exhibits a magnetic field that is much more homogeneous than in the layers below and evolves much faster. That includes fast propagating (MHD) waves. Further improvements of the simulations like time-dependent hydrogen ionisation are currently in progress. This class of models is capable of explaining apparently contradicting diagnostics such as carbon monoxide and UV emission at the same time.Comment: 6 pages, 2 figures, to appear in proceedings of IAU symposium 239, August 21 - 25, 2006, Pragu
    • …
    corecore